
Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	
Dagstuhl Talk 6/17/13	

DIY Parallel Data Analysis	

Image courtesy pigtimes.com	

Scientific Data Analysis Today	

•  Big science = big data, and	

•  Big data analysis => big science resources	

•  Data analysis is data intensive.	

•  Data intensity = data movement.	

•  Parallel = data parallel (for us)	

•  Big data => data decomposition	

•  Task parallelism, thread parallelism, while important, are

not part of this work	

•  Most analysis algorithms are not up to the challenge	

•  Either serial, or 	

•  Communication and I/O are scalability killers	

2	

Example of a data flow network

Definition of Data Analysis	

•  Any data transformation, or a network or transformations.	

•  Anything done to original data beyond its original generation.	

•  Can be visual, analytical, statistical, or data management.	

3	

Visual	

Particle tracing of thermal hydraulics flow

Statistical	

Information entropy analysis of astrophysics

Topological	

Morse-Smale Complex of combustion

Geometric	

Voronoi tessellation of cosmology

Data Analysis Comes in Many Flavors	

You Have Two Choices to Parallelize Data Analysis	

5	

or	
By hand	
 With tools	

void ParallelAlgorithm() {	

 …	

 MPI_Send();	

 …	

 MPI_Recv();	

 …	

 MPI_Barrier();	

 …	

 MPI_File_write();	

}	

void ParallelAlgorithm() {	

 …	

 LocalAlgorithm();	

 …	

 DIY_Merge_blocks();	

 …	

 DIY_File_write()	

}	

6	

Library	

Written in C++ with C bindings	

Autoconf build system (configure, make, make install)	

Lightweight: libdiy.a 800KB	

Maintainable: ~15K lines of code, including examples	

DIY usage and library organization	

Features	

Parallel I/O to/from storage	

Domain decomposition	

Network communication	

Utilities	

!"#$%&'"() *"+$&%",&'"()-.((%

/)&%0+"+-1"23&30

4%&+56-789:;;;6-</== >&3&*"8?6-*"+@'

@.16-A+$B%(?6-C5$%%6-*.D

E@F

G>@

78"H52(3

I%(2&%

J%(K9")H

/++"H)#8)'

E@F

E8K(#L(+"'"() =(##$)"K&'"()
M8&N
E&'&

@OA

P3"'8-
M8+$%'+

=(#L38++"()Q'"%"'"8+ >&3&%%8%
!(3'

E&'&'0L8
=38&'"()

>&3&%%8%

DIY���
helps the user write data-parallel analysis algorithms by decomposing a

problem into blocks and communicating items between blocks. ���

Nine Things That DIY Does	

7	

1. Separate analysis ops from data ops	

2. Group data items into blocks	

3. Assign blocks to processes	

4. Group blocks into neighborhoods	

5. Support multiple multiple instances of 2, 3, and 4	

6. Handle time	

7. Communicate between blocks in various ways	

8. Read data and write results	

9. Integrate with other libraries and tools	

!"#$%&'(('()"#$%&'(('(*"#$%&'((

!"#$

!%
!&

!'
()*+,

-$.!"+$/

/01!"1)
2$"34(*.4**5

/01+$

$0*+4

!$#0*.1)
2$"34(*.4**5

!"#$6/!$0/

!7
!'

!8

!9
!8

!:

!"#$%&'()*%+$#,$-$#./$#,$'$/#/'*$#,$01$2%3456#75##8+

Data Movement Patterns	

8	

Many different analysis operations share a small set of communication
patterns. These communication kernels together with supporting utilities for
decomposition and I/O can be encapsulated, optimized, and reused.	

Analysis Communication

Sort-Last Rendering Swap-Based Reduction

Morse-Smale Complex Merge-Based Reduction

Information Entropy Merge-Based Reduction

Particle Tracing Neighborhood Exchange

Voronoi Tessellation Neighborhood Exchange

Graph layout Send-Receive

Semi	

Regular	

Regular	
 Heterogeneous	

Data	

Homogeneous	

Data	

Irregular	

3 Communication Patterns	

9	

!"#$%&'
' () * + , - .

/ 0 (' ((() (* (+ (,

!"#$%&(

!12#342

' () * + , - .

/ 0 (' ((() (* (+ (,

' () * + , - .

/ 0 (' ((() (* (+ (,

!"#$%&'
(&)&* ' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&+
(&)&,

!34#564

' + , - * . / 0

1 2 +' ++ +, +- +* +.

' + , - * . / 0

1 2 +' ++ +, +- +* +.

!"#$%&'
(&)&*

' + , - * . / 0

1 2 +' ++ +, +- +* +.

1 +' +, +*

1 +,

!"#$%&+
(&)&,

!34#564

Nearest neighbor	
 Swap-based
reduction	

Merge-based
reduction	

Different Neighborhood Communication Patterns	

10	

DIY provides point to point and different varieties of collectives within a neighborhood via
its enqueue_item mechanism. Items are enqueued are subsequently exchanged (2 steps).	

How to enqueue items
for neighbor exchange	

•  DIY offers several
options	

•  Send to a particular
neighbor or neighbors,
send to all nearby
neighbors, send to all
neighbors	

•  Support for periodic
boundary conditions
involves tagging which
neighbors are periodic
and calling user-defined
transform on objects
being sent to them	

Interaction with Other Libraries	

11	

DIY by design doesn’t include input or output data models. Rather than re-
inventing them, it can import and export those models.	

Import: Replicate model using DIY_Decomposed(), explicitly providing blocks and
neighbors to DIY	

Export: Just use the other model API. DIY does not prevent you from making
other library calls.	

Writing a DIY Program	

12	

Tutorial Examples	

•  Block I/O: Reading data, writing analysis

results	

•  Static: Merge-based, Swap-based reduction,

Neighborhood exchange	

•  Time-varying: Neighborhood exchange	

•  Spare thread: Simulation and analysis

overlap	

•  MOAB: Unstructured mesh data model	

•  VTK: Integrating DIY communication with

VTK filters	

•  R: Integrating DIY communication with R

stats algorithms	

•  Multimodel: multiple domains and

communicating between them	

Documentation	

•  README for installation	

•  User’s manual with description, examples

of custom datatypes, complete API
reference	

Published Performance and Scalability	

13	

DIY	

•  Peterka, T., Ross, R., Kendall, W., Gyulassy, A., Pascucci, V., Shen, H.-W., Lee, T.-Y., Chaudhuri, A.:
Scalable Parallel Building Blocks for Custom Data Analysis. Proceedings of Large Data Analysis and
Visualization Symposium (LDAV'11), IEEE Visualization Conference, Providence RI, 2011.	

•  Peterka, T., Ross, R.: Versatile Communication Algorithms for Data Analysis. 2012 EuroMPI Special
Session on Improving MPI User and Developer Interaction IMUDI'12, Vienna, AT.	

DIY applications	

•  Peterka, T., Ross, R., Nouanesengsey, B., Lee, T.-Y., Shen, H.-W., Kendall, W., Huang, J.: A Study of
Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields. Proceedings IPDPS'11,
Anchorage AK, May 2011. 	

•  Gyulassy, A., Peterka, T., Pascucci, V., Ross, R.: The Parallel Computation of Morse-Smale
Complexes. Proceedings of IPDPS'12, Shanghai, China, 2012.	

•  Nouanesengsy, B., Lee, T.-Y., Lu, K., Shen, H.-W., Peterka, T.: Parallel Particle Advection and FTLE
Computation for Time-Varying Flow Fields. Proeedings of SC12, Salt Lake, UT. 	

•  Peterka, T., Kwan, J., Pope, A., Finkel, H., Heitmann, K., Habib, S., Wang, J., Zagaris, G.: Meshing the
Universe: Integrating Analysis in Cosmological Simulations. Proceedings of the SC12 Ultrascale
Visualization Workshop, Salt Lake City, UT.	

•  Chaudhuri, A., Lee-T.-Y., Zhou, B., Wang, C., Xu, T., Shen, H.-W., Peterka, T., Chiang, Y.-J.: Scalable
Computation of Distributions from Large Scale Data Sets. Proceedings of 2012 Symposium on Large
Data Analysis and Visualization, LDAV'12, Seattle, WA.	

Particle Tracing	

14	

Particle tracing of ¼ million particles in a 20483 thermal hydraulics dataset results in
strong scaling to 32K processes and an overall improvement of 2X over earlier algorithms	

Information Entropy	

15	

Computation of information entropy in 126x126x512
solar plume dataset shows 59% strong scaling efficiency.	

Morse-Smale Complex	

16	

Computation of Morse-Smale complex in 11523 Rayleigh-Taylor instability
data set results in 35% end-to-end strong scaling efficiency, including I/O. 	

17	

For 1283 particles, 41 % strong scaling for total tessellation time, including I/O;
comparable to simulation strong scaling.	

In Situ Voronoi Tessellation	

Recap and Looking Ahead	

18	

To Do: Research Directions	

•  Advanced decomposition	

•  Block groups	

•  Improved communication algorithms	

•  Less synchronous, more overlap

with computation	

•  High-level communication operations	

•  Ghost cell exchange, kernel

convolution (stencil)	

•  Load balancing	

•  Block overloading, dynamic
reassignment	

•  Programming models	

•  MPI + X on Mira, Titan	

•  Usability	

•  Improved API	

Done: Benefits	

•  Productivity	

•  Express complex algorithms flexibly	

•  Multiple blocks per process	

•  Complete / partial reductions	

•  Neighbor inclusion and
communication	

•  Simplify existing tasks	

•  Custom data type creation	

•  Compression	

•  Performance	

•  Published scalability	

•  Configurable algorithms	

Tom Peterka	

tpeterka@mcs.anl.gov	

Mathematics and Computer Science Division	

Acknowledgments:	

Facilities	

Argonne Leadership Computing Facility (ALCF)	

Oak Ridge National Center for Computational Sciences (NCCS)	

Funding	

DOE SDMAV Exascale Initiative	

DOE Exascale Codesign Center	

DOE SciDAC SDAV Institute	

DIY Parallel Data Analysis

http://www.mcs.anl.gov/~tpeterka/software.html	

https://svn.mcs.anl.gov/repos/diy/trunk	

Dagstuhl Talk 6/17/13	

